
 

1.1.QSAR identifier (title):

WS: Water solubility prediction from

   OPERA (OPEn saR App) models.

1.2.Other related models:

No related models

1.3.Software coding the model:

OPERA V1.02

OPERA (OPEn (quantitative) structure-activity Relationship Application) is a standalone free and

open source command line application. It provides a suite of QSAR models to predict

physicochemical properties and environmental fate of organic chemicals based on PaDEL

descriptors. It is available for download in Matlab, C and C++ languages from github under MIT

license.

Kamel Mansouri (mansouri.kamel@epa.gov; mansourikamel@gmail.com);

https://github.com/kmansouri/OPERA.git

 

 

PaDEL descriptors V2.21

Open source software to calculate molecular descriptors and fingerprints.

Chun Wei Yap (phayapc@nus.edu.sg)

http://padel.nus.edu.sg/software/padeldescriptor

 

 

MATLAB

MATrix LABoratory is a multi-paradigm numerical computing environment and fourth-generation

programming language

http://www.mathworks.com/company/aboutus/contact_us/?s_tid=gn_cntus

http://www.mathworks.com/products/matlab/

 

2.1.Date of QMRF:

1 November 2016

2.2.QMRF author(s) and contact details:

[1]Kamel Mansouri, ORISE research fellow at National Center for Computational Toxicology

(NCCT), U.S. Environmental Protection Agency, mansourikamel@gmail.com;

mansouri.kamel@epa.gov

[2]Antony Williams, National Center for Computational Toxicology (NCCT), U.S. Environmental

Protection Agency, Williams.Antony@epa.gov 

2.3.Date of QMRF update(s):

2.4.QMRF update(s):

QMRF identifier (JRC Inventory):To be entered by JRC
QMRF Title:WS: Water solubility prediction from
    OPERA (OPEn saR App) models.
Printing Date:Dec 5, 2016

1.QSAR identifier

2.General information



2.5.Model developer(s) and contact details:

Kamel Mansouri, ORISE research fellow at National Center for Computational Toxicology (NCCT),

U.S. Environmental Protection Agency, mansourikamel@gmail.com; mansouri.kamel@epa.gov 

2.6.Date of model development and/or publication:

2016

2.7.Reference(s) to main scientific papers and/or software package:

[1]An automated curation procedure for addressing chemical errors and inconsistencies in public

datasets used in QSAR modeling. 2016. Kamel Mansouri, Chris M. Grulke, Ann M. Richard, Richard

S. Judson and Antony J. Williams. SAR & QSAR in Environ. Res; doi:

10.1080/1062936X.2016.1253611.

[2]OPERA: A QSAR tool for physicochemical properties and environmental fate predictions. Kamel

Mansouri, Antony Williams, Chris Grulke, Ann Richard, Richard Judson (in Preparation)

[3]PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints.

Chun Wei Yap. (2011). J. Comput. Chem., 32: 1466–1474. doi:10.1002/jcc.21707

http://onlinelibrary.wiley.com/doi/10.1002/jcc.21707/abstract

[4]A KNIME workflow for chemical structures curation and standardization in QSAR modeling. Kamel

Mansouri, Sherif Farag, Jayaram Kancherla, Regina Politi, Eugene Muratov, Denis Fourches, Ann

Richard, Richard Judson, Alexander Tropsha. (in preparation)

[5]The influence of data curation on QSAR Modeling – examining issues of quality versus quantity of

data (SOT). Williams, A., K. Mansouri, A. Richard, AND C. Grulke. Presented at Society of

Toxicology, New Orleans, LA, March 13 - 17, 2016.

https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=311418

[6]An Online Prediction Platform to Support the Environmental Sciences (American Chemical

Society). Richard, A., C. Grulke, K. Mansouri, R. Judson, AND A. Williams. Presented at ACS Spring

Meeting, San Diego, CA, March 13 - 17, 2016.

https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryId=311655

[7]The importance of data curation on QSAR Modeling: PHYSPROP open data as a case study.

Kamel Mansouri, Christopher Grulke Ann Richard Richard Judson Antony Williams. Presented at

QSAR2016 14 June 2016, Miami, FL http://www.qsar2016.com/program 

2.8.Availability of information about the model:

Non-proprietary suite of QSAR models freely available as a command

     line standalone application (OPERA: OPEn saR App) from github under MIT

     license: https://github.com/kmansouri/OPERA.git. Its predictions for the

     full DSSTox 720k chemicals are published on the EPA CompTox Chemistry

     Dashboard ( https://comptox.epa.gov/dashboard). Training

     and validation sets are available for visualization on the dashboard and

     as SDF files provided in supporting information Section 9.3 and from the

     p a p e r  [ r e f  1 - 2 ,  S e c t i o n  2 . 7 ] .  (

ftp://newftp.epa.gov/COMPTOX/Sustainable_Chemistry_Data/Chemistry_Dashboard/PHYSPROP_

Analysis)

2.9.Availability of another QMRF for exactly the same model:

Not to date

 

3.1.Species:

3.Defining the endpoint - OECD Principle 1



Not applicable

3.2.Endpoint:

Physicochemical: Water solubility 

3.3.Comment on endpoint:

The solubility of a substance is the maximum amount of a material

   (called the solute) that can be dissolved in given quantity of solvent at

   a given temperature. This property is the water solubility (in

   moles/Liter) at 25oC. 

3.4.Endpoint units:

Log moles/L

3.5.Dependent variable:

WS

3.6.Experimental protocol:

The experimental data were downloaded from the EPI Suite data

   webpage (http://esc.syrres.com/interkow/EpiSuiteData.htm).

   These data are from PHYSPROP (The Physical Properties

   Database) which is a collection of a wide variety of sources built by

   Syracuse Research Corporation (SRC). Experimental protocols of the

   different parts of data can be traced back to the original referenced

   literature from the database.

3.7.Endpoint data quality and variability:

The original data collected from the PHYSPROP

     database (5764 chemicals) have undergone a series of processes to curate

     the chemical structures and remove duplicates, obvious outliers and

     erroneous entries. This procedure also included a consistency check to

     ensure only good quality data is used for the development of the QSAR

     model (5076 chemicals).  

Then, QSAR-ready structures were generated by

     standardizing all chemical structures and removing duplicates, inorganic

     and metallo-organic chemicals (4836 chemicals). The descriptions of

     KNIME workflows that were developed for the purpose of the cleaning and

     standardization of the data are available in the papers [ref 1 and ref 4

     Section 2.7].  

The curated outlier-free experimental data (4224

     chemicals) was divided into training and validation sets before the

     machine learning and modeling steps.

 

4.1.Type of model:

QSAR model using PaDEL descriptors [ref2 Sect 1.3].

4.2.Explicit algorithm:

Distance weighted k-nearest neighbors (kNN)

This is a refinement of the classical k-NN classification algorithm where the contribution of each of

the k neighbors is weighted according to their distance to the query point, giving greater weight to

closer neighbors.The used distance is the Euclidean distance. kNN is an unambiguous algorithm

that fulfills the transparency requirements of OECD principle 2 with an optimal compromise between

4.Defining the algorithm - OECD Principle 2



model complexity and performance.

4.3.Descriptors in the model:

[1]XLogP, Unitless, Atom-type partition coefficient calculation. Wang, R., Fu, Y., and Lai, L., A New

Atom-Additive Method for Calculating Partition Coefficients, Journal of Chemical Information and

Computer Sciences, 1997, 37:615-621; Wang, R., Gao, Y., and Lai, L., Calculating partition

coefficient by atom-additive method, Perspectives in Drug Discovery and Design, 2000, 19:47-66

[2]naasC, Unitless, Atom type electrotopological state: Count of atom-type E-State: :C:-. Hall, L. H.,

and Kier, L. B. (1995). Electrotopological state indices for atom types: A novel combination of

electronic, topological, and valence state information. J Chem Inf Comput Sci 35, 1039-1045; Liu,

R., Sun, H., and So, S. S. (2001). Development of quantitative structure-property relationship

models for early ADME evaluation in drug discovery. 2. Blood-brain barrier penetration. J Chem Inf

Comput Sci 41, 1623-1632.; Gramatica, P., Corradi, M., and Consonni, V. (2000). Modelling and

prediction of soil sorption coefficients of non-ionic organic pesticides by molecular descriptors.

Chemosphere 41, 763-777.

[3]minHBa, Unitless, Atom type electrotopological state: Minimum E-States for (strong) Hydrogen

Bond acceptors. Hall, L. H., and Kier, L. B. (1995). Electrotopological state indices for atom types: A

novel combination of electronic, topological, and valence state information. J Chem Inf Comput Sci

35, 1039-1045; Liu, R., Sun, H., and So, S. S. (2001). Development of quantitative structure-

property relationship models for early ADME evaluation in drug discovery. 2. Blood-brain barrier

penetration. J Chem Inf Comput Sci 41, 1623-1632.; Gramatica, P., Corradi, M., and Consonni, V.

(2000). Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides by

molecular descriptors. Chemosphere 41, 763-777.

[4]MLFER_A, Unitless, Molecular linear free energy relation: Overall or summation solute hydrogen

bond acidity. Platts JA, Butina D, Abraham MH, Hersey A. Estimation of molecular free energy

relation descriptors using a group contribution approach. J Chem Inf Comput Sci. 1999;39(5):835-

45.

[5]nHBAcc, Unitless, Hbond acceptor count: Number of hydrogen bond acceptors (using CDK

HBondAcceptorCountDescriptor algorithm).

[6]maxdNH, Unitless, Atom type electrotopological state: Maximum atom-type E-State: =NH. Hall, L.

H., and Kier, L. B. (1995). Electrotopological state indices for atom types: A novel combination of

electronic, topological, and valence state information. J Chem Inf Comput Sci 35, 1039-1045; Liu,

R., Sun, H., and So, S. S. (2001). Development of quantitative structure-property relationship

models for early ADME evaluation in drug discovery. 2. Blood-brain barrier penetration. J Chem Inf

Comput Sci 41, 1623-1632.; Gramatica, P., Corradi, M., and Consonni, V. (2000). Modelling and

prediction of soil sorption coefficients of non-ionic organic pesticides by molecular descriptors.

Chemosphere 41, 763-777.

[7]MLFER_E, Unitless, Molecular linear free energy relation: Excessive molar refraction. Platts JA,

Butina D, Abraham MH, Hersey A. Estimation of molecular free energy relation descriptors using a

group contribution approach. J Chem Inf Comput Sci. 1999;39(5):835-45.

[8]mindNH, Unitless, Atom type electrotopological state: Minimum atom-type E-State: =NH. Hall, L.

H., and Kier, L. B. (1995). Electrotopological state indices for atom types: A novel combination of

electronic, topological, and valence state information. J Chem Inf Comput Sci 35, 1039-1045; Liu,

R., Sun, H., and So, S. S. (2001). Development of quantitative structure-property relationship

models for early ADME evaluation in drug discovery. 2. Blood-brain barrier penetration. J Chem Inf

Comput Sci 41, 1623-1632.; Gramatica, P., Corradi, M., and Consonni, V. (2000). Modelling and

prediction of soil sorption coefficients of non-ionic organic pesticides by molecular descriptors.



Chemosphere 41, 763-777.

[9]MDEO-11, Unitless, Molecular distance edge: Molecular distance edge between all primary

oxygens. Liu, S. and Cao, C. and Li, Z. , Approach to Estimation and Prediction for Normal Boiling

Point (NBP) of Alkanes Based on a Novel Molecular Distance Edge (MDE) Vector, lambda, Journal

of Chemical Information and Computer Sciences, 1998, 38:387-394

[10]apol, Unitless, Sum of the atomic polarizabilities (including implicit hydrogens)

[11]minHsOH, Unitless, Atom type electrotopological state: Minimum atom-type H E-State: -OH.

Hall, L. H., and Kier, L. B. (1995). Electrotopological state indices for atom types: A novel

combination of electronic, topological, and valence state information. J Chem Inf Comput Sci 35,

1039-1045; Liu, R., Sun, H., and So, S. S. (2001). Development of quantitative structure-property

relationship models for early ADME evaluation in drug discovery. 2. Blood-brain barrier penetration.

J Chem Inf Comput Sci 41, 1623-1632.; Gramatica, P., Corradi, M., and Consonni, V. (2000).

Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides by molecular

descriptors. Chemosphere 41, 763-777. 

4.4.Descriptor selection:

PaDEL software was used to calculate 1440

     molecular descriptors. A first filter was applied in order to remove

     descriptors with missing values, constant and near constant (standard

     deviation of 0.25 as a threshold) and highly correlated descriptors (96%

     as a threshold). The remaining 708 descriptors were used in a feature

     selection procedure to select a minimum number of variables encoding the

     most relevant structural information to the modeled endpoint. This step

     consisted of coupling Genetic Algorithms (GA) with the weighted kNN

     algorithm and was applied in 5 fold cross validation on the training set (3158

     chemicals). This procedure was run for 200 consecutive independent runs

     maximizing Q 2 in cross-validation and minimizing the number

     of descriptors. The number of k neighbors is optimized within the range

     of 3 to 7. The descriptors were then ranked based on their frequency of

     selection during the GA runs. The best model showed an optimal

     compromise between the simplicity (minimum number of descriptors) and

     performance (Q2 in cross-validation) to ensure transparency

     and facilitate the mechanistic interpretation as required by OECD

     principles 2 and 5. More details in paper [ref2 Section 2.7].

4.5.Algorithm and descriptor generation:

PaDEL descriptors were calculated based on

     two-dimensional (2D) chemical structures generated by the Indigo

     cheminformatics suite of tools implemented in KNIME. 2D descriptors were

     selected over 3D to avoid complicated and usually irreproducible

     geometrical optimizations. The calculated descriptors fall into

     different groups such as constitutional indices, ring descriptors,

     topological indices, 2D matrix based descriptors, functional group

     counts and atom counts. Details and references provided Section 4.3.

4.6.Software name and version for descriptor generation:

PaDEL-Descriptors V2.21

An open source software to calculate molecular descriptors and fingerprints.

Chun Wei Yap (phayapc@nus.edu.sg)



http://padel.nus.edu.sg/software/padeldescriptor

4.7.Chemicals/Descriptors ratio:

3158 chemicals (trainingset)/11 descriptors= 287.07

 

5.1.Description of the applicability domain of the model:

The model is applicable to heterogeneous organic chemicals. In the 

implementation of the model several pieces of information are given to 

help the user in evaluating the reliability of a prediction. The

chemical structure is first assessed to see if it is falling within the 

Applicability Domain of the model or not. Then the accuracy of the

predicted value is reported based on the similarity of the query

chemical to its neighboring chemicals in the training set of the model. 

This fullfills the requirements of the 3rd OECD principle by defining

     the limitations in terms of the types of chemical structures,

     physicochemical properties and mechanisms of action for which the model

     can generate reliable predictions.

5.2.Method used to assess the applicability domain:

The applicability domain of the model is assessed in two

     independent levels using two different distance-based methods. First, a

     global applicability domain is determined by means of the leverage

     approach that checks whether the query structure falls within the

     multidimensional chemical space of the whole training set.  

The leverage of a query chemical is proportional to its

     Mahalanobis distance measure from the centroid of the training set. The

     leverages of a given dataset are obtained from the diagonal values of

     the hat matrix. This approach is associated with a threshold leverage

     that corresponds to 3*p/n where p is the number of model variables while

     n is the number of training compounds. A query chemical with leverage

     higher than the threshold is considered outside the AD and can be

     associated with unreliable prediction.  

The leverage approach has specific limitations, in particular with

     respects to gaps within the descriptor space of the model or at the

     boundaries of the training set. To obviate such limitations, a second

     tier of applicability domain assessement was added. This comprised a

     local approach which only investigated the vicinity of the query

     chemical. This local approach provides a continuous index ranging from 0

     to 1 which is different from the first approach which only provides

     Boolean answers (yes/no). This local AD-index is relative to the

     similarity of the query chemical to its 5 nearest neighbors in the p

     dimensional space of the model. The higher this index, the more the

     prediction is likely to be reliable.

5.3.Software name and version for applicability domain assessment:

Implemented in OPERA V1.02

An implementation of a local similarity index and the leverage approach based on the work of

Sahigara, F.; Mansouri, K.; Ballabio, D.; Mauri, A.; Consonni, V.; Todeschini, R. Comparison of

5.Defining the applicability domain - OECD Principle 3



Different Approaches to Define the Applicability Domain of QSAR Models. Molecules 2012, 17,

4791-4810.

Kamel Mansouri (mansouri.kamel@epa.gov; mansourikamel@gmail.com);

https://github.com/kmansouri/OPERA.git

5.4.Limits of applicability:

These two AD methods described in Section 5.2 are complementary

     and can be interpreted in the following way:  

- If a chemical is considered outside the global AD with a low

     local AD-index, the prediction can be unreliable  

- If a chemical is considered outside the global AD but the local

     AD-index is average or relatively high, this means the query chemical is

     on the boundaries of the training set but has quite similar neighbors.

     The prediction can be trusted.  

- If a chemical is considered inside the global AD but the local

     AD-index is average or relatively low, this means the query chemical

     fell in a "gap" of the chemical space of the model but still within the

     boudaries of the training set and surrounded with training chemicals.

     The prediction should be considered with caution.  

- If a chemical is considered inside the global AD with a high

     local AD-index, the prediction should be considered reliable.  

Even though the applicability domain is necessary to set the

     limits of the interpolation space of the model, it doesn't necessarily

     inform about the quality of the prediction especially in the empty

     spaces and around the edges of the descriptor space. In order to

     overcome this limitation and help the user decide about the reliability

     of a prediction, we added a confidence level index ranging from 0 to 1

     relative to the accuracy of prediction of the 5 nearest neighbors to the

     query chemical. The higher this index, the more the prediction is likely

     to be reliable.

 

6.1.Availability of the training set:

Yes

6.2.Available information for the training set:

Internal ID; CAS checksum; name validity; preferred name; IUPAC name; Original SMILES; QSAR-

ready canonical smiles; InChI; Salt information; DSSTox GSID; Experimental reference; Consistency

flag

CAS RN: Yes

Chemical Name: Yes

Smiles: Yes

Formula: No

INChI: Yes

MOL file: Yes

6.3.Data for each descriptor variable for the training set:

All

6.Internal validation - OECD Principle 4



6.4.Data for the dependent variable for the training set:

All

6.5.Other information about the training set:

The training set consists of 3158 chemicals. The

     structures are randomly selected to represent 75% of the available data

     keeping a similar normal distrubution of WS vlaues in both training and

     test sets using the Venetian blinds method. The values are ranging from

     ~-12 to ~1.5. A plot of the distribution of WS values is provided in the

     supporting information Section 9.3.

6.6.Pre-processing of data before modelling:

No preprocessing of the values.

6.7.Statistics for goodness-of-fit:

Performance in training: 

R2=0.87 

RMSE=0.82

6.8.Robustness - Statistics obtained by leave-one-out cross-validation:

6.9.Robustness - Statistics obtained by leave-many-out cross-validation:

Performance in 5-fold cross-validation:

 

Q2=0.87

 

RMSE=0.81

 

A plot of the experimental versus predicted values

     for the training set is provided in supporting information Section 9.3.

6.10.Robustness - Statistics obtained by Y-scrambling:

6.11.Robustness - Statistics obtained by bootstrap:

6.12.Robustness - Statistics obtained by other methods:
 

7.1.Availability of the external validation set:

Yes

7.2.Available information for the external validation set:

Internal ID; CAS checksum; name validity; preferred name; IUPAC name; Original SMILES; QSAR-

ready canonical smiles; InChI; Salt information; DSSTox GSID; Experimental reference; Consistency

flag

CAS RN: Yes

Chemical Name: Yes

Smiles: Yes

Formula: No

INChI: Yes

MOL file: Yes

7.3.Data for each descriptor variable for the external validation set:

All

7.4.Data for the dependent variable for the external validation set:

7.External validation - OECD Principle 4



All

7.5.Other information about the external validation set:

The validation set consists of 1066 chemicals. 

The values are ranging from ~-10 to ~1.2.

7.6.Experimental design of test set:

The structures are randomly selected to represent

     25% of the available data keeping a similar normal distrubution of WS

     vlaues in both training and test sets using the Venetian blinds method.

     A plot of the distribution of WS values is provided in the supporting

     information Section 9.3.

7.7.Predictivity - Statistics obtained by external validation:

Performance in test: 

R2=0.86 

RMSE=0.86

7.8.Predictivity - Assessment of the external validation set:

The validation set consisting of 1066 chemicals

     which is equivalent to a third (1/3) of the training set is sufficient

     for the evaluation of the predictivity of the model and a good

     representation of the chemical space as shown in the multi-dimensional

     scaling plot provided in supporting information Section 9.3. A plot of

     the experimental versus predicted values for the validation set is

     provided in supporting information Section 9.3.

7.9.Comments on the external validation of the model:

The choice of proportions between the training set and the validation

set as well as the splitting method helped in accurately evaluating the

model and covering most of the training set chemical space. This goal

was accomplished without the need to do a structural sampling that

usually shows over-optimistic evaluation of the predictivity or a

complete random selection that risks biasing the evaluation towards a

certain region of the chemical space.

 

8.1.Mechanistic basis of the model:

The model descriptors were selected statistically but they can also be

mechanistically interpreted. 

Water solubility is a very important physicochemical parameter for

     risk assessment, environmental fate of chemicals and ADMET (Absorp-

     tion, Distribution, Metabolism, Excretion, Toxicity) optimization in

     drug discovery. The solubility of a compound can be regarded as a partitioning of the

compound between its crystal lattice and the solvent and just like VP, it

is governed by itermlolecular forces and pairwise interactions in addition

to molecular size.This explains why octanol-water partition

   coefficient logP is a great estimator of water solubility [Meylan et al.

   1995, Wakita et al. 1986 and Klopman et al. 1992]. 

It was demonstrated that another important factor that influences

     the partitioning of chemicals into water is the H-bond acceptor ability

8.Providing a mechanistic interpretation - OECD Principle 5



     of chemicals (i.e. interaction of acceptor atoms with hydrogen atoms of

     water) [Raevsky et al. 2003]. The correlation of H- bond acceptor and

     donor factors leads to a prediction of the solubility with high accuracy

     [Raevsky et al. 2003]. A slight contribution to solubility was

     demonstrated for the steric interactions of vapors with water molecules,

     characterized by means of the volume-related molecular polarizability. A

     volume-related term was found to have a negative contribution to

     solubility in the case of the liquid chemicals/water system [Schaper et

     al. 2003].  

A wide list of parameters was demonstrated to have an influence on

     solubility prediction including linear solvation energy relationships

     and a variety of geometric, electronic, and topological molecular

     descriptors [Yalkowsky and Banerjee 1992]. 

Such descriptors are also employed in our water solubility estimation

model: 

XLogP: Atom-type partition coefficient calculation. 

naasC: Atom type electrotopological state: Count of atom-type

     E-State: :C:-.  

maxdNH: Atom type electrotopological state: Maximum atom-type

     E-State: =NH.mindNH: Atom type electrotopological state: Minimum atom-type

     E-State: =NH.minHsOH: Atom type electrotopological state: Minimum atom-type H

     E-State: -OH.minHBa: Atom type electrotopological state: Minimum E-States for

     (strong) Hydrogen Bond acceptors. 

MLFER_A: Molecular linear free energy relation: Overall or

     summation solute hydrogen bond acidity.nHBAcc: Hbond acceptor count: Number of hydrogen

bond acceptors

     (using CDK HBondAcceptorCountDescriptor algorithm).MDEO-11: Molecular distance edge:

Molecular distance edge between

     all primary oxygens.MLFER_E: Molecular linear free energy relation: Excessive molar

     refraction. 

Apol: Sum of the atomic polarizabilities (including implicit

     hydrogens)

8.2.A priori or a posteriori mechanistic interpretation:

A posteriori mechanistic interpretation.

8.3.Other information about the mechanistic interpretation:

For more details and full reference, see

     references in Section 4.3 and Section 9.2.

 

9.1.Comments:

This QSAR model for WS prediction is part of the

     NCCT_Models Suite that is a free and open-source standalone application

     for the prediction of physicochemical properties and environmental fate

     of chemicals. This application is available in the Supporting

     information Section 9.3 of this report and in the paper ref 2 Section 2.7.

     The detailed results of this suite of models applied on more than 700k

9.Miscellaneous information



     DSSTox  chem ica l s  a re  ava i l ab l e  on  t he  iCSS  chem is t r y  dashboa rd

(h t t ps : / / comp tox .epa .gov /dashboa rd ) .

 

This current version of the model is mainly based

     on curated and standardized data collected from the Physprop database.

     All NCCT_Models are designed to fulfil the requirement of the 5 OECD

     principles to ensure transparency and reproducibility of the results. In

     order to predict new chemicals, the models only require 2D chemical

     structures that are used to calculate molecular descriptors by PaDEL

     2.21 software. Then a simple weighted kNN algorithm is used to make the

     prediction based on the observed values of the k closest molecules. All

     models showed high robustness and statistics stability between training,

     5-fold cross-validation and the external validation set.

 

Considering the full applicability domain of the 1066

     chemicals with available data and the same models parameters described

     earlier, the calibration statistics would be an R 2 of 0.87 and

     an RMSE of 0.81.
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9.3.Supporting information:

Training set(s)

Test set(s)

QSAR_ready_Curated_3_4STAR_WS.sdf file:///\\Aa.ad.epa.gov\ord\RTP\Users\K-
Q\kmansour\Net
MyDocuments\work\OPERA\SDF\WS\QSAR_rea
dy_Curated_3_4STAR_WS.sdf

QSAR_ready_Curated_3_4STAR_WS.sdf file:///\\Aa.ad.epa.gov\ord\RTP\Users\K-
Q\kmansour\Net
MyDocuments\work\OPERA\SDF\WS\QSAR_rea
dy_Curated_3_4STAR_WS.sdf

file:///\\Aa.ad.epa.gov\ord\RTP\Users\K-Q\kmansour\Net MyDocuments\work\OPERA\SDF\WS\QSAR_ready_Curated_3_4STAR_WS.sdf
file:///\\Aa.ad.epa.gov\ord\RTP\Users\K-Q\kmansour\Net MyDocuments\work\OPERA\SDF\WS\QSAR_ready_Curated_3_4STAR_WS.sdf
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